ON THE EXTENSION OF THE OPTICAL-MECHANICAL ANALOGY

(0 PRODOLZ日ENII OPTIEO-MEEBANICEEBEOI ANALOGII)

```
PMM Vol.22, No.4, 1958, pp. 487-489
```


N. G. CHETAEV

(Moscom)

Hamilton discovered the analogy between the wave-optics of Huygens and the motions of a mechanical system subject to holonomic constraints and subjected to forces that can be represented by a potential function.

This famous discovery has directed the progress of analytical dynamics for a whole century.

Theories of light continued to develop. Cauchy was the first to set the problem on the corresponding extension of the optical-mechanical analogy. In this article we establish the analogy between the mathematical theory of light of Cauchy and the stable motion of holonomic, conservative mechanical systems [1].

Let us investigate a mechanical system subject to holonomic constraints. Let us denote its independent generalized (holonomic) coordinates as q_{1}, \ldots, q_{n}, n is the number of degrees of freedom, p_{1}, \ldots, p_{n} are the conjugate momenta.

For simplicity we will assume that the holonomic constraints are independent of time, and the forces acting on the system are represented by a potential function $U\left(q_{1}, \ldots, q_{n}\right)$ independent of time.

Let

$$
2 T=\sum_{i, j} g_{i j} p_{i} p_{j}
$$

denote twice the kinetic energy of the material system under consideration; under assumptions made, functions $g_{i j}=g_{j i}$ do not depend on time t and may be dependent on the coordinates q_{s}.

Hamilton's partial differential equation has the form

$$
\begin{equation*}
\sum_{i j} g_{i j} \frac{\partial V}{\partial q_{i}} \frac{\partial V}{\partial q_{j}}=2(U+h) \tag{1}
\end{equation*}
$$

where h represents the constant of the kinetic energy.

The complete interral of the Hamilton equation (1) is a function

$$
U\left(q_{i}, \ldots, q_{n} ; \alpha_{1} \ldots, \alpha_{n}\right)+\text { const }
$$

satisfying equation (1) and depending on the constants a_{1}, \ldots, a_{n} none of which is arbitrary:

$$
\left\|\frac{\partial^{2} V}{\partial q_{i} \partial \alpha_{j}}\right\| \neq 0
$$

and the constent of the kinetic energy is some function of the constants a_{s}

$$
h=h\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

According to the well-known theorem of Hamilton-Jacobi, the general solution of the equation of motion is given by equations

$$
\begin{equation*}
p_{i}=\frac{\partial V}{\partial q_{i}}, \quad \beta_{i}=-t \frac{\partial h}{\partial \alpha_{i}}+\frac{\partial V}{\partial \alpha_{i}} \quad(i=1, \ldots, n) \tag{2}
\end{equation*}
$$

where β_{i} are constants.
Perturbed motions of the mechanical system are defined by different values of constants α_{j} and β_{j}.

In order to select from among the possible motions of a mechanical system those which are stable with respect to the variables, under conditions of perturbation of only the initial values, let us investigate the differential equations for Poincaré variations

$$
\begin{align*}
\frac{d \xi_{i}}{d t} & =\sum_{j}\left(\frac{\partial^{2} H}{\partial q_{j} \partial p_{i}} \xi_{j}+\frac{\partial^{2} H}{\partial p_{j} \partial p_{i}} \eta_{j}\right) \\
\frac{d \eta_{i}}{d t} & =-\sum_{j}\left(\frac{\partial^{2} H}{\partial q_{j} \partial q_{i}} \xi_{j}+\frac{\partial^{2} H}{\partial p_{j} \partial q_{i}} \eta_{i}\right) \tag{3}
\end{align*}
$$

where ξ_{i}, η_{i} are variations of coordinates q_{i} and of momenta p_{i}, and

$$
H=T-U
$$

For a stable unperturbed motion, equations for Poincare variations (3) represent a system of linear differential equations, reducible by means of a nonsingular linear transformation of variables to a system of linear differential equations with constant coefficients; all the characteristic values of the system of independent solutions must be equal to zero.

Variations of the coordinates and the momenta of those perturbed motions that are defined by variations of constants β_{i} only, whilst the a_{i} values remain fixed, will have zero characteristic values, if the unperturbed motion is stable.

In such perturbed motions, because of equation (2)

$$
\begin{equation*}
\eta_{i}=\sum_{j} \frac{\partial^{2} V}{\partial q_{i} \partial q_{j}} \xi_{j} \quad(i=1, \ldots, n) \tag{D}
\end{equation*}
$$

Hence, taking into consideration the explicit expression for H, we have

$$
\begin{equation*}
\frac{d \xi_{i}}{d t}=\sum_{j, z} \xi_{s} \frac{\partial}{\partial q_{z}}\left(g_{i j} \frac{\partial V}{\partial q_{j}}\right) \quad(i=1, \ldots, . n) \tag{4}
\end{equation*}
$$

Variables q_{i} and constants a, appearing in the right-hand part of equation (4), must be replaced by their values corresponding to an unperturbed motion.

For a stable unperturbed motion let equation (4) be reducible by a nonsingular linear transformation

$$
x_{i}=\sum_{j} \gamma_{i j} \xi_{j}
$$

with a constant determinant $\Gamma=\left\|\boldsymbol{\gamma}_{i j}\right\|$.
If $\xi_{1 r}, \ldots, \xi_{n r}(r=1, \ldots, h)$ denote a normal system of independent solutions of equation (4), then

$$
x_{i r}=\sum_{j} \gamma_{i j} \xi_{j r}
$$

will be the solutions of the reduced system. For a stable unperturbed motion all the characteristic values of the solutions ($x_{1 r}, \ldots, x_{n r}$) are zero, as we have seen, and consequently

$$
\left\|x_{s r}\right\|=C^{*}=\left\|\gamma_{s j}\right\|\left\|\xi_{j r}\right\|=\Gamma C \exp \int \sum \frac{\partial}{\partial q_{i}}\left(g_{i j} \frac{\partial V}{\partial q_{j}}\right) d t
$$

where C^{*}, C are some constants different from zero. It follows from the last relation that for a stable perturbed motion

$$
\begin{equation*}
\sum \cdot \frac{\partial}{\partial q_{i}}\left(g_{i j} \frac{\partial V}{\partial q_{1}}\right)=0 \tag{5}
\end{equation*}
$$

As the functions $g_{i j}$ are defined by the expression for kinetic energy

$$
2 T=\sum g_{i j} p_{i} p_{j}
$$

the principal diagonal minors of the discriminant $\left\|\boldsymbol{R}_{\boldsymbol{i j}}\right\|$ will all, according to the theorem of Sylvester, be positive, and consequently equation (5) will be elliptic.

Let us investigate some twice differentiable function

$$
\Phi(-h t+V)
$$

dependent on the complete integral $-h t+V$ of the Hamilton-Jacobi partial differential equation.

For a stable unperturbed motion, because of (5), (1) and (2) we have
$\sum \frac{\partial}{\partial q_{i}}\left(g_{i j} \frac{\partial \Phi}{\partial q_{j}}\right)=\Phi^{\prime} \sum \frac{\partial}{\partial q_{i}}\left(g_{i j} \frac{\partial V}{\partial q_{j}}\right)+\Phi^{\prime \prime} \sum g_{i j} \frac{\partial V}{\partial q_{i}} \frac{g V}{\partial q_{j}}=\frac{2(U+h)}{h^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}$
and consequently

$$
\frac{2(U+h)}{h^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=\sum \cdot \frac{\partial}{\partial q_{i}}\left(g_{i j} \frac{\partial \Phi}{\partial q_{j}}\right)
$$

This wave equation establishes the analogy between the mathematical theory of light of Cauchy and the stable motions of holonomic conservative systems.

If, when integrating the Hamilton equation (1), the variables can be separated, then conditions of stability similar to (5) could be written down for each complete group of separated variables.

BIBLIOGRAPHY

1. Chetaev, N.G., 0 nekotorykh zadachakh ob ustoichivosti dvizhenifa v mekhanike (On some problems of stability of motion in mechanics). PIVY Vol. 22, No. 3, 1956.
